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ABSTRACT 

 
A method to evaluate the seismic collapse performance of frame structures is presented, 
considering uncertainties in both the ground motion hazard and inelastic structural response to 
extreme input ground motions.  The procedure includes a new seismic-intensity scaling index 
that accounts for period softening and thereby reduces the large record-to-record variability 
typically observed in inelastic time-history analyses.  Equations are developed to combine results 
from inelastic time history analyses and a site-specific hazard curve to calculate the mean annual 
probability of a structure exceeding its collapse limit state. 
 
 

1. INTRODUCTION 

 

Research on performance-based earthquake engineering poses many challenges, among them 

being the need for a consistent methodology to predict structural collapse as a function of the 

earthquake ground motion intensity.   Components to an assessment methodology for collapse 

should include (1) definition of the seismic hazard, (2) simulation of structural response to input 

ground motions, including stiffness and strength degradation, and (3) statistical interpretation of 

results.  The methodology must rigorously account for variability in performance prediction 

arising due to uncertainties in the inherent seismic hazard and the nonlinear simulation of 

structural response. 

 

A large source of variability in seismic performance assessment arises from simplifications in 

defining earthquake intensity relative to the true damaging effects of ground motions on 

structures.  Current codes in the United States, such as the International Building Code (ICC 

2000), define earthquake hazard in terms of spectral response coefficients, typically spectral 

acceleration measured at the first mode period of vibration, Sa(T1).   First mode spectral 

acceleration is the basis of equivalent lateral force design procedures, and it is often used as the 

default earthquake intensity scaling parameter for time-history analyses.  While first mode 
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spectral acceleration is an accurate index for structures that respond elastically, this single 

parameter does not reflect many of the aspects of earthquake ground motions that affect inelastic 

stiffness and strength degradation.  An objective of this paper is to examine a new two-parameter 

hazard intensity index that can improve the accuracy of structural performance predictions based 

on inelastic time history analyses.  A related objective is the development of reliability-based 

equations for interpreting the performance limit state to compare the effect of using a single 

versus two-parameter intensity measure. 

 

The scope and approach of this paper is as follows.  First, the general concepts of earthquake 

ground motion intensity measures are introduced, including an overview of traditional measures 

and the development of attenuation functions for the new proposed index.  Second, a series of 

case study buildings are introduced and analyzed to determine their collapse limit state using 

incremented inelastic time-history analyses coupled with a post-earthquake stability analysis.  

Results of the case study analyses are used to calibrate the new earthquake intensity measure.   

Next, a probability-based assessment procedure is developed to describe the collapse 

performance in terms of mean annual probability of exceedance and an equivalent load and 

resistance format.  Finally, the probabilistic assessment procedure is demonstrated through an 

application to one of the case study buildings.  

 

2. HAZARD INTENSITY MEASURES 

 

Traditionally, building codes have quantified earthquake intensity as a function of either peak 

ground motions (acceleration or velocity) or linear response spectrum quantities (acceleration, 

velocity, or displacement).  As implied by their name, linear response spectrum quantities do a 

good job at characterizing earthquake effects in structures that respond elastically, but they do 

not necessarily capture inelastic behavior. More elaborate indices, which seek to improve 

characterization of earthquake ground motions, have been the subject of continuing studies.  For 

example,  Housner (1975) proposed combining spectral acceleration together with strong motion 

duration. More recently, Luco (2001) has proposed extending linear spectral quantities into the 

nonlinear realm through the use of inelastic spectral response demands.  While they are generally 

more accurate, one drawback of the nonlinear spectral values is that they imply a coupling 

between the earthquake hazard definition and the inelastic structural properties. This complicates 
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development of seismic hazard maps for general use.  Another topic of recent research concerns 

near fault directivity effects and whether these warrant specialized treatment in earthquake 

hazard characterization (e.g., Alavi & Krawinkler 2000).  These are just a few examples of 

research to investigate the damaging features of earthquake ground motions and develop 

improved hazard intensity measures to represent these effects. 

 

Common to most studies of improved intensity measures is the goal to characterize ground 

motion hazards in a statistically meaningful way for predicting structural performance. This 

implies that the best intensity measures are those that result in the least record-to-record 

variability, measured with respect to a common intensity index, when evaluating structural 

performance to multiple earthquake records.  Of course, even with the best ground motion 

characterization, uncertainties will persist in characterizing the geologic earthquake hazard and 

in simulating inelastic structural   performance.   

 

Improved Hazard Intensity Measure - Sa(T1)RSa
αααα 

The International Building Code (ICC 2000) and most other earthquake engineering design 

standards in the United States define hazard intensity as the spectral acceleration of the ground 

motion, typically calculated at the fundamental (first mode) period of the structure.  A known 

shortcoming of this measure is that it does not account for inelastic lengthening of the period as 

the structure softens under stiffness degradation.  As illustrated in the response spectra plots of 

Fig. 1, two ground motions 

characterized on the basis of their first-

mode spectral response may result in 

significantly different inelastic 

response, depending on the slope of 

the spectra at lengthened  periods.   For 

example, when normalized with 

respect to Sa(T1), record #2 will 

inevitably produce larger inelastic 

deformations than record #1.  This 

trend is not accounted for in the single 

spectral quantity, Sa(T1). 

T1 TF 

Sa

T, Period 

Sa(T1) 

Sa(TF) Record #2 

Record #1 

As damage occurs 

Figure 1 – Effects of structural softening.
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A simple extension to current practice that can help capture the period shift effect is to introduce 

a second intensity parameter that reflects spectral shape. The proposed parameter to do this is a 

ratio of spectral accelerations at two periods,  

)(
)(

1TS
TSR

a

fa
Sa

=          (1) 

where T1 is the first mode period and Tf is a longer period that represents the inelastic (damaged) 

structure.  This ratio can then be combined with the first mode spectral acceleration, Sa(T1), to 

give the following new two-parameter hazard intensity measure 
α

aSa RTSS )( 1
* =          (2) 

where α and the ratio Tf/T1 are determined by calibration to optimize the intensity index by 

minimizing the variability in computed results.   

 

Attenuation Functions for Two-Parameter Index 

Given the prevalence of linear spectral acceleration in codes and practice, most hazard 

assessment techniques and data are geared toward this predicting this quantity.  For example, 

national hazard maps available from USGS define earthquake hazard in terms of spectral 

acceleration at two periods (roughly T = 0.2 second and 1 second) representative of short and 

long period structures.  In devising new intensity measures, it is convenient if they can be 

derived by manipulating existing models and hazard data.  

 

Since the proposed intensity measure, S*, is simply a function of the spectral acceleration at two 

different periods (T1 and Tf), it is relatively straightforward to modify existing attenuation 

function to accommodate this index.  Equations 3 and 4 show the transformation of a single 

parameter attenuation function, E[ln Sa(Tx)], to the modified function, E[ln S*], where E[ln …] is 

read as the “expected value of the natural log of the given parameter” and other variables are as 

defined previously: 

)(ln)(ln)1(ln 1
*

faa TSTSS αα +−=         (3)  

[ ] [ ] [ ])(ln)(ln)1(ln 1
*

faa TSETSESE αα +−=             (4) 

In addition to the expected value of S*, the standard deviation, *ln Sσ , must also be defined.  This 

in turn requires the correlation between spectral accelerations at the two periods, )( 1TSa  and 



 5

)( fa TS . Inoue (1990) provides the following empirical correlation coefficient,
fSaSa lnln 1

ρ , that 

fills this need: 

( ) ( )fSaSa TT
f

/1ln/1ln33.01 1lnln 1
−−=ρ       (5) 

Given this correlation expression, the standard deviation of S* can be defined as follows: 

( ) ( )
fff SaSaSaSaSaSaS lnlnlnln

2
ln

22
ln

22
*ln 111

121 σασαρσασασ −++−=    (6) 

Most spectral attenuation relationships define empirical coefficients as a function of frequency or 

period that can be manipulated to calculate S* according to Eq. 4.  For example, Abrahamson & 

Silva (1997) define an attenuation function as follows:  

[ ] [ ] (R))(m-maa  -m).( a) (m-m a  a  SE n
a ln58ln 113312141 ++++=   (7) 

where the a-coefficients are tabulated by Abrahamsom & Silva, m is the earthquake magnitude, 

m1 is a given base magnitude, and R is the distance from the epicenter to the site.   Substituting 

Eq. 7 into Eq. 4, one obtains the following relationship for modified coefficients that can be 

applied in the otherwise standard attenuation relationship to obtain S*: 

21
* )1( xTxTx aaa αα +−=          (8) 

These new relationships can then be applied in a standard probabilistic site hazard analysis where 

the required performance is evaluated on the basis of this new intensity, S*.  

 

3. BUILDING TESTBEDS 

 

In related research (Mehanny et al., 2000, 2001) several moment frame structures have been 

developed and analyzed to exercise seismic assessment and design provisions for composite 

construction.  These frames are utilized here to provide the basis for calibrating the new intensity 

measure parameters, α and Tf/T1, and illustrate their application in a probabilistic performance 

assessment.  The case study structures consist of three six-story frames and one twelve-story 

frame, all of which are designed according to provisions of the International Building Code (ICC 

2000) and AISC Seismic Provisions (1997) for a site in a high seismic region of California.  Due 

to space limitations the frames are only briefly introduced here.  For further details the reader is 

referred to Mehanny et al. (2000, 2001).   
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Three of the case study structures are composite moment frames composed of reinforced 

concrete columns and steel beams (referred to as RCS systems), and the forth is a steel space 

frame. An elevation of one of the frames, a six-story RCS perimeter frame, is shown in Fig. 2.  

Beam sizes in the frames were generally governed by drift requirements while the reinforced 

columns were governed by the strong column weak beam criterion.  As summarized in Table 1, 

vibration periods for the frames range from T1 = 1.3 to 2.1 seconds (note – other data reported in 

Table 1 is discussed later). 

 

Inelastic static and dynamic (time history) analyses are conducted using an analysis program 

developed by El-Tawil et al. (1996) that takes into account second-order geometric behavior and 

spread-of-plasticity effects in the beam-columns and connections.  Inelastic component 

properties are based on the expected (as compared to nominal) material strengths, where the 

expected strengths are taken as 1.15 times the nominal strengths.  Static pushover and inelastic 

time history analyses are run simultaneously with gravity loads equal to 100% dead load and 

25% live load.  Summarized in Table 1 are static lateral overstrengths of the frames, defined as 

Ωo = Vu/Vd where Vu is the ultimate base shear and Vd is the IBC design base shear. The 

overstrengths range from roughly Ωo = 2.6 for the six-story RCS perimeter frame up to Ωo = 6.1 

for the six-story steel space frame.  The overstrengths are relatively large compared to the typical 

expected values of Ωo = 2 to 3, due to the following sources of overstrength: (1) expected versus 

minimum specified material strengths, (2) minimum stiffness (drift) criteria, (3) structural 

redundancy, (4) strong column criterion, and (5) discrete member sizing.  

 

 

Table 1 – Testbed frame data 
IDA Dispersion Data for Alternative Intensity Measures 
General Records Near Fault Records Frame ID 

 

First 
Mode 

Period, 
T1 (sec) 

Vu/Vd,,,,        
ΩΩΩΩ 

  

  σln(IDR|Sa) 
σln(IDR|SaRsa) 
(Optimized) 

σlnIDR|SaRsa 
(2.0,0.5) σln(IDR|Sa) 

σln(IDR|SaRsa) 
(Optimized) 

σln(IDR|SaRsa) 
(2.0,0.5) 

6S_RCS_S 1.3sec 3.9 0.42 0.28 
(1.9,0.65) 0.29 0.45 0.22 

(1.8,0.9) 0.27 

6S_S_S 1.3sec 6.1 0.27 0.20 
(1.2,2.4) 0.23 0.30 0.18 

(1.6,0.8) 0.19 

12S_RCS_S 2.1sec 4.4 0.24 0.19 
(1.6,0.6) 0.22 0.26 0.21 

(2.4,0.4) 0.22 

6S_RCS_P 1.5sec 2.6 0.30 0.23 
(1.65,0.45) 0.24 - - - 
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4. COLLAPSE ANALYSIS TECHNIQUES 

 

Incremented Dynamic Analysis 

Seismic performance is assessed through nonlinear time history analyses using two sets of 

ground motions – one comprised of eight general records and another of eight near-fault records 

with forward directivity.  Response spectra for the near-fault records are superimposed on the 

2% in 50-year design hazard spectrum used to design the case study buildings in Fig. 3.  

Acceleration components of the records are scaled, where the resulting ground motion intensity 

is reported in terms of either spectral acceleration, )( 1TSa , or the proposed new index, α
aSa RS .  

Shome and Cornell (1997) have demonstrated that such scaling of records will not bias the 

results and is an appropriate technique for multi-level hazard analysis.  More details on the 

ground record properties and scaling issues for the records are summarized by Mehanny (2000). 

 
Results of the time history analyses are summarized by plotting the scaled intensity measure 

versus maximum Interstory Drift Ratio (IDR), creating what are referred to herein as 

Incremented Dynamic Analysis (IDA) curves.  Shown in Fig. 4 are examples of the IDA curves 

for the RCS perimeter frame building subjected to the general records, where each data point 

corresponds to the peak IDR resulting from a single time history analysis.  The collection of  data 

points for a single ground record scaled to multiple hazard levels forms the IDA curve.   Results 

are plotted in terms of the )( 1TSa  intensity in Fig. 4a and  α
aSa RS  in Fig. 4b.   

Figure 2 –Elevation of RCS  
perimeter frame. 
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Figure 4 – IDA plots for 6S_RCS_P Frame: (a) IDR vs. Sa(T1) (b) IDR vs. SaRsa
αααα 
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Comparing the graphs in Fig. 4, it is obvious that the two-parameter intensity measure (Fig. 4b) 

results in significantly less record-to-record variability than )( 1TSa  (Fig. 4a).  The variability can 

be quantified in terms of dispersion of the drift response conditioned on the ground motion 

intensity measure.  Dispersion is calculated according to the following equation as the mean 

squared deviation of the drift data from an average response curve obtained by linear regression 

in log-log space between drift and the seismic intensity (of the form, ln IDRMAX = A + B ln IM): 

2
1

2
1 ,

ln 1
)ˆln(ln













−
−

= ∑ =
n

RDIIDR MAX
n

i iMAX
measureintensityIDRMAX

σ     (9) 

where iMAXIDR ,  is the ith response calculated for a given intensity, MAXRDI ˆ is the value from the 

regression curve, and n is the total number of observations (n=8 in this case). 

 

Comparing Figs. 4a and 4b, the dispersion σln(IDR,Sa) = 0.45 for the Sa(T1) index is roughly twice 

that of σln(IDR,SaR) = 0.22 for α
aSa RS .  This result is based on using the optimized coefficients of 

α=0.45 and Tf/T1 =1.65 for the α
aSa RS  index, determined by varying these factors so as to 

minimize the dispersion.  Note that these optimal values are specific to the RCS six-story 

perimeter frame under the set of eight ground motions.  Reduction in the dispersion in this way 

helps reduce the number of records necessary to simulate time history response within a 

specified confidence interval.  
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While the two-parameter index reduces the overall dispersion, this reduction is most apparent at 

larger drifts, where the structure behaves nonlinearly.  In fact, comparing Figs. 4a and 4b, in the 

elastic range (at lower drifts), the two-parameter α
aSa RS  index results in more variability than 

Sa(T1).  This follows from the fact that Sa(T1) provides a nearly exact correlation with drift for 

the linear case, whereas the period shift captured in α
aSa RS  works best when the structure 

behaves nonlinearly.  This suggests that an improved index would be one where the α and Tf 

parameters are devised to vary with the degree of inelastic action, similar in some ways to how 

the period is shifted using the capacity spectrum method for calculating the target displacement 

for nonlinear static pushover analyses.   

 

While the IDA’s provides useful information on the structural response, it is apparent from the 

curves in Fig. 4 that the IDA’s do not reveal a definitive stability limit state.  Some curves, such 

as the one for the LP89-HCA record, asymptotically approach a bounding strength (in terms of 

the intensity measure), but others do not.  For example, the CM92-RIO and Valparaiso plots 

maintain positive slopes at very large earthquake intensities and drifts.  This reflects inherent 

limitations of the inelastic time-history analysis to fully capture the strength and stiffness 

degradation at large inelastic deformations. 

 

Frame Stability Limit State Determination 

To evaluate global instability, the authors have employed a procedure that integrates local 

damage indices, computed during the time-history analysis, through a supplementary stability 

analysis of the damaged structure.  The basic procedure, described in detail by Mehanny and 

Deierlein (2001), entails a post-earthquake second-order inelastic stability analysis to assess the 

loss of gravity load capacity due to damage incurred during the earthquake. This procedure, 

which leads to the plot of an intensity measure versus gravity stability index λu shown in Fig. 5, 

entails three basic steps. (1) Perform a nonlinear time-history analysis and calculate the 

cumulative damage indices. This provides the basis to quantify the localized (distributed) 

damage caused by a given earthquake ground motion.  The damage indices are empirical 

equations that track the structural damage as a function of cumulative plastic deformations.   (2) 

Modify the analysis model based on the damage incurred during the time-history analysis. This 
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involves reducing element stiffness and strengths as a function of the cumulative damage indices 

and incorporating the residual (permanent) building drift into the structural topology.  (3) 

Reanalyze the modified structural model through a second-order inelastic static analysis under 

gravity loads up its inelastic stability limit. The resulting stability index, λu in Fig. 5, is defined 

as the ratio of the vertical load capacity to the applied gravity loads, where the gravity loads are 

assumed as full dead load plus 25% of the live load.  

 

The stability index, λu, provides a global failure criterion that integrates the effect of local 

damage sustained under each earthquake record and intensity.  Figure 5 shows the evolution of 

the stability index for the six-story RCS space frame, where there is a one-to-one correspondence 

between stability points in Fig. 5 and the maximum interstory drifts in Fig. 4.  The initial value 

of λuo = 5.5 (on the horizontal axis in Fig. 5) is the index for the undamaged structure, implying 

that the undamaged frame has sufficient lateral strength/stiffness to maintain stability under 5.5 

times the gravity load.  This large value reflects the fact that the structure has significant gravity-

load overstrength as a result of the high seismic loads. The point where the curves cross λu=1.0 

is point at which the structure can no longer sustain stability under its self-weight due to 

extensive seismic damage.  The stability index at this point is defined as λf and the associated 

median value of the seismic hazard value is 
fλµ̂ . This level is defined as the ‘capacity’ – or 

collapse limit state – of the structure.  Between these limits, λuo and λf, a third limit point is 

identified at λu = 0.95λuo, corresponding to the point at which the lateral stability begins to 
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Figure 5 – Stability curves versus IM, (a) IM = Sa, (b) IM = SaRsa
αααα 
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significantly degrade. This point, referred to as λOD (Onset of Damage) defines where there is a 

sharp transition in the )( 1TSa  or α
aSa RS  versus λu stability curve, representing the intensity level 

beyond which the stability index degrades rapidly.  

 

Similar to the IDA plots (Fig. 4), the )( 1TSa  index shows much larger record-to-record 

variability in the λu response than the α
aSa RS index.  The standard deviations of )( 1TSa  at λOD 

and λ f are equal to 0.40 and 0.49, respectively, compared to 0.26 and 0.15 using α
aSa RS .  This 

reduced variability leads to a better approximation of the expected collapse performance.   

 

5. DETERMINATION OF GENERAL αααα AND Tf 

 

The examples described above show how the proposed intensity measure, α
aSa RS , can 

significantly reduce the record-to-record variability in calculating the seismic performance.  

What remains to determine is optimum values of α and the period multiplier, C=Tf/T1, which 

minimize dispersion for a broad class of building frames.  To accomplish this, we will utilize 

analysis results of the four case study structures introduced previously.  

 

To determine the optimal calibration for α and C, IDA and λu stability analyses are run for each 

of the four structures under the sixteen ground motions (eight general and eight near fault).  

Next, the α
aSa RS response data is plotted for various combinations of α and C, the average 

response curve is fit to the data, and the dispersion is calculated. This results in many α and C 

pairs for each structure, each with its own dispersion, σlnIDR.  The optimal α and C pair for each 

structure is one that yields the least dispersion.   The graphs in Fig. 6 show the resulting 

relationships between α, C, and the resulting dispersion for each structure and bin of ground 

motions.  The optimum alpha-coefficient is plotted versus the corresponding C in Fig. 6a, and the 

associated dispersions for the corresponding pairs of α and C are plotted in Fig. 6b. 

 

Determination of one general pair of α and C obviously compromises the preciseness that can be 

achieved with multiple pairs tailored for each structure and each ground record.  Nevertheless, a 
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common calibration is desired to make the procedure convenient for generalized use.  Referring 

to Fig. 6b, on average the dispersion turns out to be relatively constant over a large range of C 

and α pairs.  Further, from Fig. 6a we see that the optimal α (given C) is relatively stable for 2 < 

C < 3.  This indicates that the intensity measure is somewhat insensitive, within a certain range, 

to the choice of period multiplier.  Based on these observations, a pair of C = 2.0 (Tf  = 2.0T1) 

and α = 0.5 is proposed for general use.  Thus, the proposed intensity measure takes the specific 

definition: 

5.0
5.0

1

1
1 )(

)0.2()(*
aSa

a

a
a RSTS

TSTSS =




=               (10)  

 

Based on this definition, the data in Figs. 4b and 5b are re-plotted and shown in Fig. 7. 

Dispersion data for all three intensity measures ( )( 1TSa , the optimal α
aSa RS , and the generalized 

5.0
aSa RS ) are summarized for each frame in Table 1. 

 

Referring to Table 1, in all cases the proposed intensity measure (SaRSa
α) consistently reduces 

the variability in the calculated structural response, compared to the Sa(T1) index. The two-

parameter index with optimum coefficients (SaRSa
α) obviously does a better job than the average 

index (SaRSa
0.5 per Eq. 10), but the average index still does well – particularly where the 

dispersion is large for the original Sa(T1) index.   Conversely, the only cases where the new 

index fails to make a significant impact is those instances where the variability of the response is 
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already low when scaled by spectral acceleration alone.  Comparing results for the average two-

parameter index (Eq. 10) with Sa(T1), the two-parameter index reduces the range of dispersion 

from 0.24-0.45 for Sa(T1) to 0.19-0.29 for SaRSa
0.5. 

 

6. PROBABILITY ASSESSMENT OF COLLAPSE PREVENTION 

 

Using the inelastic time-history and stability analysis method described above, the “collapse 

prevention” performance for a given set of ground motion records is defined by the stability 

limit, 
fλµ̂ , defined in terms of the seismic hazard intensity – either Sa(T1) or SaRSa

0.5.   The next 

step in the performance assessment is to compare the stability limit  to the seismic hazard, 

considering the uncertainty in both the calculated response indices and the site hazard curve.   

 

Mean Annual Probability of Exceedance 

Defining failure (collapse) by the likelihood of the ground motion intensity exceeding the 

stability limit 
fλµ̂ the mean annual probability of collapse can be described by the following:  

[ ]
f

IMPPf λµ̂≥=            (11) 

Where Pf is the mean annual probability of failure and IM is the seismic hazard demand 

expressed using an intensity measure consistent with that used to define the stability limit, 
fλµ̂ .  

In this case, the two alternative intensity measures considered are )( 1TSa  or 5.0
aSa RS .  The 
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seismic demands are expressed in terms of a probabilistic hazard curve (the annual probability of 

exceeding a specified intensity measure), determined either explicitly by a probabilistic seismic 

hazard analysis or using published hazard maps.   

 

Equation 11 can be further expanded into the following form using the total probability theorem: 

∫
∞

=
0

)()( duufuHP
fIMf λ         (12) 

Where u is the intensity measure, HIM(u) is the hazard curve, and )(uf
fλ  is the probability 

density of the structural stability limit.  To permit closed-form solution of the probability 

integral, the hazard function is assumed to take the following form: 
k

oIM ukuH −=)(                           (13)  

where ko and k are coefficients that fit Eq. 13 to the hazard data.  Further, )(uf
fλ is assumed as a 

lognormal distribution with the median 
fλµ̂ and the dispersion δλf (or σln(λf)).  Given these 

assumptions, the integral solution to Eq. 12 is as follows: 

 
22

2
1

)ˆ( f

f

k
IMf eHP λδ

λµ=                 (14) 

where HIM(
fλµ̂ ) is the mean annual probability from the hazard curve evaluated at the median 

capacity 
fλµ̂ , and the other terms are as defined previously. 

 

LRFD-like Format of Collapse Probability 

An alternative way to envision the mean annual collapse probability is by rearranging Eq. 14 so 

as to compare the hazard demand to the structural capacity in a format similar to that used for 

Load and Resistance Factor Design (LRFD) provisions.  Setting the failure probability in Eq. 14 

to a maximum acceptance probability criteria, Pf < Pacceptance, Eq. 13 and 14 can be combined to 

give the design requirement: 

eacce

kk
o Pek f

f ptanc
2

1 22

ˆ <− λδ

λµ         (15) 

Rearranging this equation, the required capacity 
fλµ̂  to ensure that the probability of failure is 

less than the acceptance criterion, Pacceptance, is given by the following: 
2

tan

2
1

ˆ f

ceaccepf

k

P eIM λδ

λµ ≥         (16) 
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where 
ceaccepPIM

tan
is the hazard intensity measure with the annual probability, eeptancaccP , of being 

exceeded (i.e. )(
eptancaccePIMceptanacce IMHP = ).  The term, 

2
2

1
f

k
e λδ

, which reflects the variability of  

the median stability limit 
fλµ̂ , can be moved to the left side of Eq. 16, resulting in the following: 

≥≥
−

feptancaccef

f orIMe P

k

λλ

δ
µφµλ ˆˆ

2
2

1
 “seismic demand”    (17) 

where φ=
2

2
1

f
k

e λδ−
.  This equation is similar to LRFD equations that are prevalent in code 

provisions where the “design strength” on the left side (the nominal strength reduced by a phi 

factor) is compared to the load effect or “seismic demand”. In this case there is no load factor on 

the seismic demand since the recurrence interval of the demand is implicit in its definition. 

 

An important but perhaps misleading coincidence in Eq. 17 is that the probability associated with 

the demand term (on the right side) turns out to be equal to the desired limit on the probability of 

exceeding the median stability intensity, 
fλµ̂ .  This is different than saying that one is designing 

for a given hazard with a specified probability of exceedance.  From Eq. 15, the underlying 

probability statement implied in Eq. 17 is related to the likelihood of exceeding the stability 

criterion, 
fλµ̂ taking into account both variability in the ground motion hazard and the record-to-

record variability in the stability index.  

 

Essentially, Eq. 17 enables one to establish whether a structure meets the collapse performance 

objective with a mean annual probability of exceedance, Pacceptance.  There are two basic input 

requirements for the procedure: (1) the “seismic demand” for the desired probability of 

exceedance, IMP,acceptance, determined using either hazard maps or a probabilistic seismic hazard 

analysis; and (2) the median stability limit, 
fλµ̂ , of the structure and the corresponding 

dispersion 
fλδ for a representative set of ground motions.  

 

7.  APPLICATION OF PROBABILISTIC COLLAPSE ASSESSMENT 

 

This example will go through a collapse performance assessment for the 6-story RCS perimeter 

frame.  The hazard analysis is based on a site at Yerba Buena Island (in San Francisco Bay) 
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where the San Andreas and Hayward faults govern the seismic hazard.  The seismic hazard is 

characterized two ways: (1) through an explicit probabilistic seismic hazard analysis of the site 

and (2) using spectral acceleration hazard maps from building code provisions. 

 

Annual Hazard Curves 

Probabilistic Seismic Hazard Analysis (PSHA):  Using the Abrahamson and Silva attenuation 

relationship presented in Eqs. 7 and 8, annual hazard curves for spectral acceleration, )( 1TSa , 

and the proposed intensity measure, 5.0
aSa RS , can be developed through a standard probabilistic 

seismic hazard analysis for the Yerba-Buena Site site.  Details of the hazard analysis are beyond 

the scope of this paper, but basically, this analysis provides a probabilistic assessment of 

earthquake magnitude and distance (M-R) pairs for the site, given its proximity to nearby faults.   

 

Code Based Technique:  An alternative (simplified) technique to obtain the hazard curve is to 

infer it from mapped spectral and site coefficients such as those provided by the seismic design 

provisions of the International Building Code (ICC 2000).  The first step is to calculate the 

spectral acceleration for the site using the following equation: 

1

1
T

SFS v
a =                             (18) 

where Fv is a tabulated site coefficient, given as a function of the site (soil) class and the spectral 

coefficients, and S1 is the spectral hazard coefficient obtained from seismic hazard maps with a 

an average probability of occurrence of 2% in 50-years.  Implied by Eq. 18 is a 1/T spectral 

curve in the long period range.  Using Eq. 18, one can directly obtain the 2% in 50 year (Po = 

0.0004) spectral acceleration at the first mode period T1, i.e., Sa(T1).  One can also approximate 

the two-parameter index 5.0
aSa RS , by assuming that 1111 /2)2(/)(2 TTTSTSR aaSa

=== .  Two 

approximations inherent in this assumption are that there is full correlation between the hazard 

values of Sa(T1) and Sa(2T1) and the 1/T design spectrum accurately represents the hazard 

spectrum.  Once the 2% in 50 year spectral values are known, the full hazard curve is constructed 

assuming k = 4, and then back-calculating the ko parameter.    

 

Hazard Curve Comparison:  Hazard curves for T1 = 1.5 seconds (the natural period for the six-

story RCS perimeter frame) are shown in Fig. 8, and the corresponding hazard curve parameters 



 17

are summarized in Table 2.  Also summarized in Table 2 are capacity statistics 
fλµ̂ and 

fλδ  for 

the frame.  Referring to Fig. 8a, the 2% in 50 year value of Sa(T1)PSHA = 0.57g from the 

probabilistic seismic hazard analysis is about 20% less than the code-value of Sa(T1)Code = 0.72g, 

and there are corresponding differences over the entire hazard curve.  Presumably the PSHA 

results are more accurate, but further studies would need to be done to confirm this.  Referring to 

Fig. 8b, the difference between the PSHA and code approach at the 2% in 50 year level for the 

SaRsa index is also about 20%, PSHASaa RTS 5.0
1 )( = 0.40 versus CodeSaa RTS 5.0

1 )( = 0.51g. 

Table 2 – Hazard curve coefficients and mean and dispersion of capacity 
Yerba Buena Site Code Based Technique 

IM ko k ko k fλµ̂  

  

 

fλδ  

  

 

Sa(T1) 2.3x10-5 5.0 1.1x10-4 4 1.45 0.31 

SaRSa
0.5 1.6x10-6 6.0 2.6x10-5 4 0.76 0.15 

 

Probability of Failure 

Summarized in Table 2 are all the necessary data to compute the mean annual failure 

probabilities for the six-story RCS perimeter frame using the two alternative hazard intensity 

measures, )( 1TSa  and 5.0
1 )( Saa RTS , and two alternative hazard curves (PSHA and building code 

approach).  Substituting these data into Eqs. 13 and 14, the resulting collapse probabilities, Pf, 

are calculated and summarized in Table 3.   

  

For the code hazard spectra and the )( 1TSa  index, the mean annual probability of exceeding the 

stability (collapse) performance is about 0.00005 or roughly a 0.3% chance of exceedance in 50 
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years.  Using the 5.0
aSa RS index the probability roughly doubles to a mean annual value of 

0.00009 or roughly a 0.5% in 50-year level.  Since these probabilities are less than one-forth of 

the 2% in 50-year seismic hazard probability commonly used as the target for collapse 

prevention performance, these data suggest that current code provisions result in a conservative 

design for this case.  Moreover, the failure probabilities are less by about a factor of five using 

the PSHA intensity data, implying an additional degree of conservatism in the design.   

 

Another interesting question raised by the results in Table 3 concerns the different results 

obtained using the )( 1TSa  versus 5.0
aSa RS  index.  The fact that the two-parameter index results 

in higher failure probabilities suggests that for predicting collapse performance, simple scaling 

based on )( 1TSa  may be unconservative. This follows from the logic that the two-parameter 

index more accurately represents the damaging effects of earthquakes in the hazard curve.  Note, 

however, that the difference between the two indices is not too large for the Yerba Buena site 

analysis (PSHA) where the correlation between Sa(T1) and Sa(Tf) is modeled more accurately 

than in the code-based technique. 

 

Table 3 – Failure probability and  capacity factor design factors 
  Yerba Buena Site Code Based Technique 

Pf (Sa(T1)) 1.19 x 10-5 5.37 x 10-5 Probability of 
Failure Pf (SaRSa

0.5) 1.24 x 10-5 9.29 x 10-5 
φφφφ 

  

 

0.78 0.82 
φφφφµµµµλλλλf 1.13g 1.19g 

10%in50year 0.41g 0.48g 
IM = )( 1TSa  

2%in50year 0.56g 0.72g 
φφφφ 

  

 

0.94 0.96 
φφφφµµµµλλλλf 0.72g 0.73g 

10%in50year 0.30g 0.34g 
IM = 5.0

aSa RS  

2%in50year 0.40g 0.51g 
 

Factored Capacity versus Nominal Demand 

An alternate way of assessing the analysis results is through the LRFD-like approach described 

by Eq. 17. Data for this method are summarized in the lower half of Table 3, where limiting 

values are reported for 2% in 50-year (0.0004) and 10% in 50-year (0.002) probability levels.  

Referring to Table 3, the φ factor ranges from φ = 0.78 to 0.82 for the )( 1TSa  index and from 

φ = 0.94 to 0.96 for the 5.0
aSa RS index.   The large difference between these ranges is directly 
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related to the reduced dispersion achieved using the two-parameter 5.0
aSa RS index as compared to 

the )( 1TSa  index.  

 

According to the criteria, 
eptancaccef PIM≥λµφ ˆ , the frame collapse performance limit passes the 2% 

in 50-year and 10% in 50-year probability checks in all cases.  These comparisons do reflect the 

relative difference in results between the )( 1TSa  and 5.0
aSa RS indices that is similar to the 

difference observed in the failure probabilities described previously.  For example, consider the 

ratio 
eptancaccef PIM/ˆ λµφ  between the factored capacity and the hazard intensity.  Using data from 

the Yerba-Buena PSHA at the 2% in 50-year level, the ratios are 50%2/ˆ inSa
fλµφ = 1.13/0.56 = 

2.0 for the )( 1TSa  index and 50%2/ˆ inSaSaR
fλµφ = 0.72/0.4 = 1.8 for the 5.0

aSa RS  index. 

 

8. SUMMARY AND CONCLUSIONS 

 

A method to assess seismic response and probabilistic collapse performance of structures is 

presented and demonstrated by application to a composite moment frame building.  Included is a 

proposal for a new two-parameter earthquake hazard intensity measure 5.0
aSa RS  that reflects 

both spectral intensity and spectral shape, thus accounting for inelastic strength and stiffness 

degradation (period elongation).  Data are presented which show that this proposed index 

significantly reduces the record-to-record variability in predicted response obtained from 

inelastic time history analyses.  This has practical implications on improving the accuracy of 

seismic assessment methods and reducing the number of records necessary to obtain a given 

confidence in the results. 

 

Equations are developed to interpret the probability of collapse using data from incremented 

dynamic analyses. The equations are presented in two formats, one that directly computes the 

probability of failure for a structure, and another, which mimics an LRFD format by applying a 

“phi-factor” to the capacity of the structure and comparing it to a specified hazard.   
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